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SUMMARY 

A new scheme is applied for increasing the accuracy of the penalty finite element method for incompressible 
flow by systematically varying from element to element the sign and magnitude of the penalty parameter I ,  
which enters through V.v + p / L  = 0, an approximation to  the incompressibility constraint. Not only is the 
error in this approximation reduced beyond that achievable with a constant i, but also digital truncation 
error is lowered when it is aggravated by large variations in element size, a critical problem when the 
discretization must resolve thin boundary layers. The magnitude of the penalty parameter can be chosen 
smaller than when /z is constant, which also reduces digital truncation error; hence a shorter word-length 
computer is more likely to  succeed. Error estimates of the method are reviewed. Boundary conditions which 
circumvent the hazards of aphysical pressure modes are catalogued for the finite element basis set chosen here. 
In order to compare performance, the variable penalty method is pitted against the conventional penalty 
method with constant L in several Stokes flow case studies. 
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1. INTRODUCTION 

For incompressible flow the mass conservation equation degenerates to the condition that the 
velocity field be solenoidal, i.e. divergence-free. To analyse incompressible flow, the momentum 
conservation equation-the Navier-Stokes equation in the case of a Newtonian fluid we consider 
here-must be solved subject to the solenoidal constraint. 

The momentum and continuity equations can be solved simultaneously for the unknown 
velocity vector field and pressure field. Pressure basis functions weight the continuity equation; 
velocity basis functions weight the momentum equation. Coefficients of pressure basis functions 
serve as Lagrange multipliers that enforce the solenoidal constraint.' In order to get an accurate 
finite element solution, it has been found that dqferent basis sets must be used for pressure and 
velocity. We shall henceforth refer to this as the direct mixed interpolation method. 

The ability to decouple the unknown pressure coefficients from the weighted residuals of the 
momentum equation became feasible with the discovery of how to adapt the penalty function idea 
to incompressible f l o ~ . ~ , ~  The key is to allow the fluid to be ever-so-slightly compressible by 
making pressure proportional to the divergence of velocity in what was the continuity equation, 
namely 

v.v + p / A =  0 (1) 
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and to choose the proportionality factor 1 large enough that the flow is virtually incompressible. 
Heretofore A has been chosen to be a ~ o n s t a n t . ~ . ~  In this paper we show that there can be great 
benefits from choosing it to be variable. 

In mathematical terms /z in (1) is the penalty parameter. The penalty method introduced by 
Courant, Friedrichs and Lewy7 is a means of minimizing a functional with respect to a constraint, 
an alternative to the method of Lagrange multipliers. This is done by adding to the functional the 
penalty parameter multiplied by a convex functional, usually the square, of the constraint residual. 
Under certain boundary conditions the problem of incompressible Stokes flow can be put in 
extremum form, i.e. it has a functional to minimize, but under a constraint, i.e. that velocity be 
divergence free. In practice the Galerkin weighted residual method is applied to the finite element 
discretization of the equations of motion; the extremum form, if it exists, is not passed through and 
in fact it need not exist. Instead, in the penaltyfinite dement for flow problems the 
continuity equation is replaced by (1) and pressure is expanded in finite element basis functions 
that are discontinuous at the element boundaries so that (1) weighted with the pressure basis 
functions on each element or subdomain gives rise to algebraic equations that can be solved as an 
independent set. 

As in the direct mixed interpolation method, pressure basis functions are chosen to be of lower 
order than velocity ones, and for the same reasons.'0,'' The consequence is that the coefficients of 
pressure basis functions can be eliminated from the Galerkin weighted residual equations of the 
momentum equation, thereby reducing the number of simultaneous residual equations and in turn 
the computational work needed to produce the coefficients of the finite element representation of v 
and p. 

If the same basis sets are used for the penalty and direct mixed interpolation methods a 'penalty 
solution' can in principle be made as close as desired to a 'mixed interpolation solution' of the same 
problem by choosing the penalty parameter large enough that V . v  = 0 is approximated well 
enough, i.e. that compressibility error is sufficiently small. This has been proved mathemati- 
 ally'^^' and tested n ~ m e r i c a l l y . ~ , ' ~ ~ ' ~  Digital truncation error confounds principle, however. As a 
matrix problem the pressure-freed equations of momentum residual are ill-conditioned: the 
condition number of the matrix increases in direct proportion to 1, and inversely as the square of the 
smallest element diameter, the diameter of an element being the diameter of the largest circle that 
can be inscribed in it.'4*'6,17 In reality to avoid excessive digital truncation error, 1- cannot be made 
too large. Whether a safe passage exists between the Scylla of compressibility error and the 
Charybdis of digital truncation error depends on the number of digits of accuracy of the available 
computer, on the size of the smallest elements into which the problem domain is tessellated, and on 
the ranges of interest of the parameters in the p r ~ b l e r n . ' ~ ~ ' ~  Commonly the penalty method 
requires a computer of high accuracy. 

In this paper we show that the range of penalty parameters that produce acceptable 
compressibility and digital truncation errors can usually be expanded by varying the sign and 
magnitude ofthe penalty parameter I from element to element in a certain way. The development is 
in terms of steady two-dimensional Stokes flow with fixed boundaries, i.e. flow lacking non- 
Iinearities, whether from inertial effects or free boundaries, although penalty methods have been 
applied to both.' 5 9 2 0  Error estimates found by formal mathematical analysis have been extended to 
flow with convective inertial force, i.e. flow with non-linearities, in a related paper.'l 

The finite element formulation of the equation system for Stokes flow is described in Section 2. 
The rationale behind our systematic variation of 1 is described in Section 3.1. As in the case of the 
mixed interpolation and penalty function finite element methods, our variable penalty method is 
subject to parasitic 'pressure modes' which are numerical artefacts to be avoided:".' ' boundary 
conditions which do or do not admit pressure modes are catalogued in Section 3.2. That the 
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variable penalty method can give substantially greater accuracy than the conventional penalty 
method is demonstrated in Section 4 with examples of planar Poiseuille flow, lid-driven cavity 
flow, and flow through a rotating channel. In each example the solution and accompanying 
analysis of pressure modes rely on rectangular elements, piecewise bilinear basis functions for 
velocity, and piecewise constant basis functions for pressure, although other element shapes and 
basis functions could be chosen, just as when A is held constant in the ordinary penalty method. 
The findings of this paper are summarized in Section 5. 

2. FINITE ELEMENT FORMULATION OF STOKES EQUATIONS 

The dimensionless equations of steady, creeping flow are 

V.T = 0, V * V  = 0, (2% b) 
where T = - pI + [Vv + (VV)~] is the stress tensor, v is velocity (the x and y components in two 
dimensions are u and u), and p is pressure. When the penalty approach is used, the solenoidal 
constraint (2b) is replaced by (1). 

The Galerkin weighted residual method applied to (2) gives 

where @is an appropriate velocity basis function, $jis an appropriate pressure basis function, and 
n is the outward pointing unit normal at boundary dQ of domain Q. Velocity components and 
pressure are each approximated by a summation of finite element basis functions: 

where ui, v i  and p j  are unknown coeficients of basis functions for velocity components and 
pressure. We choose for the n @s bilinear Lagrange basis functions, and for the rn $4 piecewise 
constant basis functions. Malkus and Hughes' define and discuss the compatibility of this basis set. 

Inserting (4) in (3) produces a matrix problem: 

KV + Cp = f 
CTV - M,p = g 

The column matrix f contains boundary conditions on velocity or surface traction, whereas g 
contains conditions on velocity alone. V and p are column matrices of unknown coefficients ui and 
ui, and p j .  Matrices K and C are identical to those defined by Sani et a1.l' K is positive-definite and 
symmetric for certain choices of boundary conditions and approximates the negative Laplacian 
operator. KV represents viscous stress. C is rectangular and approximates the gradient operator, 
whereas - CT, interestingly, approximates the divergence operator. - CTV represents velocity 
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divergence. The matrix 
n n 

t,+$hjj',? dA = l/,? dA, if i = j .  J *i 

is a diagonal matrix for piecewise constant $s. A discontinuous linear set of $s would, for example, 
give rise to a block diagonal M,. 

Because M, is diagonal, it can be easily inverted to give pressure as a function of velocity: 

p = MT '(CTV - g). 

(K + CM,'CT)V = C M i ' g  + f, 

(7) 

(8) 

With this the pressure unknowns pi can be eliminated from (5a) to arrive at 

a matrix equation for the column matrix V of the velocity unknowns. Thus (8) can be solved for 
velocity alone and then pressure can be calculated from (7). Sequential as opposed to simultaneous 
solution of (7) and (8) is the benefit of the penalty method. It has been shown that with certain 
boundary conditions the solution V and p of (7) and (8), as I increases uniformly, approaches the 
solution V, and p, of the direct mixed interpolation problem:3*'0*" 

KV, + Cp, = f, CTV, = g. (9) 
The matrix CM, CT and vector CM, lg for our basis choice are simply and exactly formed by 

reduced/selective integration as proved by Malkus and hug he^.^ Neither the pressure basis set t,hi 
nor the pressure coefficients p need be explicitly introduced. We have formed the resulting matrix 
problem (8) and solved it by Gauss elimination on a CDC Cyber 74 computer that has a unit 
round-off error of 

3. DECREASING PENALTY ERROR BY VARIATION OF PENALTY PARAMETER 

3.1. Strategies for penalty parameter variation 

The penalty parameter A is made a function of position, i.e. of co-ordinates x and y,  and it is 
chosen to be either positive or negative. By apt choice of A(x,y) the penalty error in a penalty 
solution, i.e. the difference between the penalty solution V and the related direct mixed- 
interpolation solution V,, can often be reduced, as demonstrated in Section 4, beyond that 
achieved by the conventional penalty method in which 2 is chosen to be equal to a positive constant 
C A .  

Although A can be a continuous function of position, there is no advantage in varying 2 in ways 
that do not alter the weighted continuity equation (3b). The most general A that is appropriate can 
be represented by a sum of the weighting (basis) functions $ j :  

m 

where Aj  are m constants in ,? to be specified. Our present scheme rests on piecewise constant $s, 
although it could be extended to higher-order $s, such as bilinear ones, so that A could be effectively 
varied within an element. 

Penalty error has contributions from two sources: compressibility error, which originates from 
the approximation (1) of the continuity equation (2b), and digital truncation error, which arises 
during solution of the matrix problem (8). The penalty parameter can be varied in such a way as to 
reduce error from both sources; strategies for reducing each are discussed in turn. 



VARIABLE PENALTY METHOD 789 

Reduction of digital truncation error. The magnitude of digital truncation error when a matrix 
equation is solved for an unknown vector by Gauss elimination is roughly proportional to the 
condition number of the matrix multiplied by the unit round-off error of the computer.” When i is 
constant, the condition number of S = K + CIM;’CT, cf. (8), has been ~ h o w n ’ ~ . ’ ~ ’ ~ ~  to be roughly 
proportional to the inverse square of the smallest of all element diameters (see above) multiplied by 
the penalty parameter. This means that when 1 is constant, just a single element of small diameter 
can inflate digital truncation error throughout the solution, as is demonstrated in examples in 
Section 4. The inflation becomes acute when to resolve thin boundary layers some elements of 
small diameter must be employed. A cure is to choose Ai, the value of I on element i (cf. (lo)), so as to 
make the value of Ai/d’ (where di is the diameter of element i )  the same on each element: 

The penalty parameter 1, is set inversely proportional to the square of the element diameter 
number-averaged over all elements, ( d ) ,  to make fair the comparison between penalty solutions 
when 2 is given by (1 1) and, for instance, when ,I = ca. Numerical test cases, however, indicate that 
&variation (1 1) increases compressibility error. 

Reduction of compressibility error. Compressibility error is roughly proportional to i- in 
conventional (namely 1 = + ca) penalty solutions.” The net compressibility, i.e. the creation or 
annihilation of fluid, averaged on each element is 

Pd f V’VddA -f  T d A  
Pi - ___ element i 
* .  __ - __ element i 

4 f dA 
element i 

f dA 
element i 

When the sign of the penalty parameter in the conventional penalty method (2 = + cn)  is 
reversed to give the negative penalty method, in which ,I = - cn, digital truncation error and 
compressibility error are found not to change perceptibly in magnitude, but compressibility error is 
found to change in sign (see Section 4). If by changing the sign of the penalty parameter from 
element to element the compressibility error contributed by each element can be made roughly to 
cancel, the compressibility error can be reduced. 

The magnitude of the net compressibility on one element defined at (12), cannot be decreased 
without increasing the magnitude of 1 on that element (i.e. A,), and thus increasing the likelihood of 
digital truncation error, as discussed above. The net compressibility of groups or patches of 
elements, however, can usually be decreased by varying the sign of ;1 from element to element; the 
argument is given below. If the net compressibility on most patches of two or more elements were 
reduced it seems probable that the solution vd would improve; this is confirmed by numerical test 
cases in Section 4. The rationale for variation of penalty parameter to reduce Compressibility error 
follows. 

The way to reduce Compressibility error is to design I I  so that the net compressibility error on 
each patch of two or more adjacent elements is lowered. One prescription of A that does this is 

4 = * c,a,/(a>, (13) 
where 1 changes sign from element to element in a chequerboard manner. The area of element i is a,. 
The number average of all element areas is ( a ) ,  and 1 is normalized by it to permit fair comparison 
with other choices of 1. We call the penalty method in which ,I varies according to (13) the variable 
penalty method. 
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Figure 1. A four-patch of elements 

The net compressibility on a patch of elements is 

Pressure p is that which satisfies the Stokes equation (2). If the discrete pressure solution pd is 
accurate, the overall error, p - Pd must be small compared to pressure p;  for this reason the last 
integral term in (14) is neglected. 

On a patch of two or more adjacent elements the net compressibility with (1 3 )  usually is less than 
with, for instance, 1 = + ca. This is demonstrated on the patch of four elements shown in Figure 1, 
although any number of elements could have been chosen. 

The net compressibility averaged over a patch of four elements in a conventional (A = + en) 
penalty solution is found by expanding p in a Taylor series about xo and yo (see Figure 1) to be 

P 

(15) 
1 

f dA " 

s V.VddA - f  -dA 
4-patch C A  =-I: - Plxo,yo + + AY)l. - - 4-patch 

4-patch 
s dA 

4-patch 

The net compressibility of a variable penalty solution, namely (1 3),  averaged over a patch of four 
elements is found to be 

4-patch 

by again expanding p in a Taylor series about xo and yo. The penalty parameter variation (1 3 )  was 
designed so that those terms in the Taylor series expansion employed in estimate (1 6) which are of 
lower order than O( ( a)/c , )  cancel; (1 3 )  is the only choice of A which does this. Furthermore, the net 
compressibility of a variable penalty solution averaged over any patch of two elements is, by the 
same reasoning as used to derive (16), of O(Ax) or O(Ay), depending on whether the two elements 
are in a row or column of the tessellation into rectangular elements; again ( 1  3 )  is the only choice of A 
which can achieve this result. 

results 
are summarized here. Under certain restrictions the compressibility error in variable penalty 
solutions for a discretization into square elements in which all sides are of length h has been 
p r o ~ e d ~ ~ , ~ ~  to be of O[h/ca]; whereas that in conventional penalty solutions has been p r ~ v e d ' ~ ~ ' ~  

Error estimates for the variable penalty method are derived in two related 
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to be of O( l/e,J. In the asymptotic limit, as the penalty constant cA increases without bound, the 
compressibility error in both methods approaches zero. However, in the asymptotic limit as 
element size h approaches zero while cI remains constant, compressibility error in variable penalty 
solutions does approach zero, whereas that of conventional penalty solutions remains finite. In 
practice both element size h and penalty constant c I  must be chosen to be finite. Although error 
 estimate^'^*'^^^^*^^ give the order of compressibility error, numerical test cases are needed to 
measure the accuracy ofeach method when it is applied to non-ideal problems; tests are reported in 
Section 4. 

Not only should the variable penalty method reduce compressibility error, but it is also expected 
to reduce digital truncation error caused by elements differing drastically in area. This expectation 
arises because the area-weighting of l given by (1 3) can reduce the condition number of S, although 
not to the extent that can be achieved by making A proportional to the square of element diameter, 
as is done in (1  1). 

In preliminary tests, the compressibility error in a penalty solution when ,I was chosen by (11)  
was found to be greater than when I was proportional to the square of element diameters, as is that 
in ( I t ) ,  and it was also of different signs on adjacent elements. When this latter choice of i, 

is employed the method is called the diameter-weighted, variable penalty method. Test cases 
reported in Section 4 indicate that penalty error is less with the variable penalty method than with 
either the conventional penalty method or the diameter-weighted, variable penalty method. 

3.2 Pressure modes in variable penalty solutions 

When the variable penalty method is applied to creeping flow under certain boundary 
conditions, the set of algebraic equations to which it leads can have a solution p d  which differs from 
the exact solution p by an amount as large as cA. When pressure error is so large that it makes the 
pressure solution p d  of large magnitude (of order cA), it also spoils the accuracy of the velocity 
solution vd because compressibility error is proportional to pressure, as (15) and (16)  make plain. 
When the boundary conditions dictated by the physical situation result in large pressure error, they 
can be avoided by choosing a different set of boundary conditions which is a close approximation 
to the original set of boundary conditions yet does not result in pressure error of large magnitude. 

To predict which boundary conditions result in large pressure error we adapt the theory 
developed by Sani et a l . l o , l l  For the bilinear velocity and piecewise constant pressure basis set on 
rectangular elements, they found that when pressure error pd - p was of large (O(c,)) magnitude it 
was primarily a combination of two pressure error fields or modes: the ‘hydrostatic mode’ 
contributes pressure error equal to an amplitude a times 

p h = ( l , l ,  1 , 1 ,  ... )T, 

and the ‘chequerboard mode’ contributes error equal to an amplitude /3 times 

P, ( +  l/al, - 1/a2 ,  + 1/a3 ,  ...I*. 
The area of element i is ai (see Figure 1). 

We now consider several selections of boundary conditions, review the theory of pressure modes 
for the direct mixed-interpolation and conventional penalty methods, and then extend this theory 
to the variable penalty method. 
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Case 1 : velocity specified at  all boundaries. The matrix 

for the direct mixed-interpolation solution of this case has two zero eigenvalues, the eigenfunctions 
of which are Ph and p,. Each of these pressure modes contributes to pressure mode error p, = 
Nph + pp, which satisfies 

C P m  = 07 (21) 
that is p, is orthogonal to the residuals of the discretized momentum equation (9a). To avoid an 
unsolvable system of algebraic equations, pressure mode error p, must also be orthogonal to the 
residual of the discretized continuity equations: p;(CTV - g) = 0, which implies p;g = 0, since 
pLCTV = 0 (cf. (21)). In most cases pLg = 0, but there are exceptions described by Sani et ~ 1 . ' ~ ~ '  ' 
where the matrix problem is unsolvable. What follows is restricted to boundary conditions that do 
satisfy p',g = 0. 

When the conventional penalty method is applied, Sani et al.''.' found that the pressure mode 
error p, is small. That error is defined here as the difference between pressure solution p and 
pressure field pO: 

P m  P - PO = f fPh + (22) 
The pressure field po is chosen to be M-orthogonal to the pressure modes; namely pTMp, = 0 and 
piMp, = 0. The so-called pressure mass matrix is M i j  = f&'t,PdA. When I = + c,, the pressure 
mass matrix is related to M, by 

M = c,M,. (23) 
In terms of M the Galerkin weighted continuity equation (5b) in the conventional penalty method 
is 

Mp = c,(CTV - 8). (24) 
Taking the inner product of (24) with a pressure mode error pm gives pLMp = c,p;(CTV - g) = 0. 
Thus pressure p is M-orthogonal to both p, and Ph. In other words the pressure modes are absent. 
Pressure p equals pO; the pressure solution pd is a close approximation to the exact pressure p.'O." 

To extend this analysis to the variable penalty method we make use of 

A" zs 

a; 0 0 
0 a! 0 
0 0 a; 

These matrices conveniently represent the pressure mass matrix, or basis function overlap matrix, 
M = A', and M ,  in the variable penalty method, Mn = A;/c,. - From (18,19,25) the pressure modes 
pc and Ph are related by 

Mp, = A' pc = AO, - ph. (26) 
The weighted residuals of the momentum equations are still orthogonal to ph and p,. The 
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continuity equation for the variable penalty method is 

AO,p - = ca(CTV - g). (27) 
Taking the inner product of (27) with pm gives p2A;p = capf(CTV - g) = 0. This results in an 
equation which determines each of the pressure mode amplitudes: prA:ph = 0 and pTA;pc = 0. 
With (26) the first implies that p is M-orthogonal to p, and thus thatthe amplitude of the 
chequerboard pressure mode is zero. With (26) the second states that pTMA-2ph = 0. Thus p is M- 
orthogonal to A-'p,, not to Ph. If all elements have the same area, p would be M-orthogonal to ph 
and the amplitude CI of the hydrostatic pressure would be zero. If, however, elements differ in area, 
CI = ( - p~MA-2ph) / (p~MA-2ph) .  Plainly the amplitude of the hydrostatic pressure mode is related 
to the disparity in element areas. 

In Case 1 the hydrostatic mode can be present but it is sizable only when elements vary greatly in 
area; nevertheless its amplitude a is even then much less than and independent of ca and so, as 
shown in Section 4.2, it may not greatly affect velocity solutions. 

Case 2: normal stress specijied at a portion of the boundary. Setting a normal stress condition 
somewhere on the boundary such as at a free surface provides a datum for pressure and the 
contribution of that condition to the gradient matrix C makes Cp,#O, i.e. the weighted 
momentum residuals depend on the amplitude CI of the hydrostatic pressure mode.'O When the 
direct mixed-interpolation method is used, the amplitude of the chequerboard pressure mode is 
still undetermined." When the conventional penalty method is applied, the amplitude P of the 
chequerboard pressure mode p ,  is zero. 

In contrast the variable penalty method gives rise to a chequerboard pressure mode of amplitude 
= O(c,) as shown below. This large amplitude pressure mode can induce compressibility error in 

the velocity solution of order unity because compressibility error is roughly proportional to 
pressure divided by ca: cf. (12). The amplitude P is predicted by taking the inner product of (27) with 
Ph: 

P;fAO,P = CnP;f(CTV - g). 

p:Mp = CaP;f(CTV - 8). 

P = cnCp;f(CTV - g)l/(P:MP,). 

(28) 

(29) 

The right side of (28) is O(c,) since Cp, is not zero; (28) and (26) give 

From (29) and (22) follows the magnitude of the chequerboard pressure mode: 

To get an accurate solution by the variable penalty method Case 2 must be avoided. 

Case 3: tangential stress specijied at a portion of the boundary. If the tangential stress is specified 
at some portion of the boundary, then the contribution of that condition to C makes Cp, # 0." 
The amplitude 6 of the chequerboard pressure mode is determined by the weighted momentum 
equations. When the direct mixed interpolation method is used, the amplitude a of the hydrostatic 
pressure mode is still undetermined." When the conventional penalty method is used, the 
amplitude a of the hydrostatic pressure mode is zero.lo,ll 

From (22) and the inner product of(27) with p, the amplitude a of the hydrostatic pressure mode 
in a variable penalty solution is 
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This hydrostatic pressure mode of O(c,) forces a penalty error of 0(1) in velocity, as the 
chequerboard pressure mode does in Case 2. 

Case 4: tangential and normal stress specified at a portion of the boundary. If a tangential stress 
condition and a normal stress condition are each specified at the same or different portions of the 
boundary, the amplitudes c1 and f i  of the pressure modes are determined by the weighted 
momentum equations through the contribution of the boundary conditions to the gradient matrix 
C.l0"' The amplitude of pressure is ordinarily not large."." 

To summarize, either velocities must be specified at all boundaries (Case 1) or both tangential 
and normal stress conditions must be imposed on some portion of the boundary to avoid penalty 
error induced by sizable pressure mode error. Other choices (Cases 2 and 3) of boundary 
conditions must be avoided for they can produce large (O(c,)) pressure modes which result in 
penalty error in velocity of order unity. 

4. CASE STUDIES 

Three flow situations are solved here by both the variable (A given by (1 3)) and the conventional 
(A = + cA) penalty methods. The negative (2. = - c,) and the diameter-weighted variable penalty 
methods are each compared to the variable and conventional penalty methods in one case. All 
three test cases are solved on a square domain tessellated into 100 (ten by ten) rectangular elements. 
Velocity is approximated by a bilinear basis set. The comparisons reveal that in the cases tested the 
variable penalty method is never less accurate than the others unless pressure modes intrude. 

4.1 Planar Poiseuille flow 

Pressure-driven flow between parallel solid planes is analysed by penalty finite element methods. 
Two different sets of boundary conditions are imposed. One allows a chequerboard pressure mode, 
the other gives a close approximation to the exact velocity field. 

Example: whole channel. Figure 2 shows the domain tessellation into square elements of equal 
size and the boundary conditions imposed. Velocity is specified at the inflow boundary and at the 
solid walls as an essential boundary condition. At the outflow boundary, normal stress is specified 

u = v = o  

0 u = v = o  1 

Figure 2. Whole channel, plane Poiseuille flow problem 
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as a natural boundary condition. No shear stress condition is specified there; instead, the velocity 
tangential to the boundary, u, is set to zero there as an essential boundary condition. 

Were the direct mixed-interpolation method used, the result would be the exact solution, i.e. 
II = 0 and u = y - y 2 ,  at all nodes. When conventional penalty solutions are calculated with different 
choices of penalty constant c,, those solutions agree with the mixed-interpolation solution within 
an error of O(l/c,) until c, becomes large enough that digital truncation error becomes 
appreciable. When the variable penalty method is applied, a chequerboard pressure mode with an 
amplitude of O(c,) arises and causes such inaccuracy in both the pressure and velocity that 
solutions are not meaningful. The boundary conditions in this example are those in Case 2 of 
Section 3.2, in which the chequerboard pressure mode is predicted to arise. 

This pressure mode can be avoided by specifying a shear stress condition somewhere on the 
boundary. A shear stress distribution could be specified at the outflow boundary, or a shear-free 
condition could be specified along the symmetry plane as is done in the next example. 

Example: half channel. Figure 3 shows that same tessellation and boundary conditions as 
V-0, Txv.0 

Figure 3. Half channel, plane Poiseuille flow problem. (Based on Figure 2 from Lectures in Applied Mathematics, (1985), 
‘Improved flux calculations for viscous incompressible flow by the variable penalty method’, H. Kheshgi and L. E. Scriven, 

Volume 22, by permission of the American Mathematical Society.) 

CONVENTIONAL PENALTY SOLUTIONS 

ABS. E R R O R E L  

ABS. ERRORS-& 10-5 i 

I I I I I I 

lo4 106 108 10‘0 
PENALTY CONSTANT, C x  

Figure 4. Absolute error, vd - v, in variable and conventional penalty solutions at a characteristic node: half channel, plane 
Poiseuille flow problem 



796 HAROON S. KHESHGI AND L. E. SCRIVEN 

imposed above except for the symmetry condition at y = 1 and, accordingly, a different inflow 
velocity profile. Because both shear and normal stress conditions are imposed (as natural 
conditions), pressure modes are too small in amplitude to perceive, as predicted in Case 4 of 
Section 3.2. Again, the direct mixed-interpolation solution is identical to the exact solution, u = 0 
and u = 2 y  - y 2 ,  at all element nodes. 

The absolute value of error (deviation from the exact solution) in u-velocity at a node located at 
x = 0.4 and y = 0 7  is plotted in Figure 4 against the penalty constants, cA, chosen for both 
conventional penalty solutions and variable penalty solutions. For cA less than lo7 the 
compressibility error in both methods is nearly proportional to l / c k  The constant of proportion- 
ality is slightly smaller in variable penalty solutions, which are thus slightly superior. Variable 
penalty solutions grow more accurate than do conventional penalty solutions at points further and 
further downstream. At cA greater than lo8, the penalty error is due to digital truncation and is 
approximately proportional to cA. Both methods incur about the same magnitude of digital 
truncation error. 

In some respects the accuracy is greatly improved by alternating the sign of the penalty 
parameter. Figure 5 shows the absolute value of the deviation from the corresponding mixed 
interpolation solution of volumetric flux out of the channel. The compressibility error in the 
conventional penalty solutions is proportional to l/cA, whereas that in the variable penalty 
solutions is proportional to l/c:, which of course is smaller. This improvement is easily explained. 
Pressure varies linearly in the channel and does not contribute to the net compressibility over a 
patch of, for instance, four elements, as shown at (16). The compressibility error in pressure that 
remains is a higher-order term.24 Compressibility error does not build up with distance 
downstream as it does in conventional penalty solutions. 

4.2 Lid-driven cavity flow 

The solution of flow in a lid-driven cavity by the conventional, negative, diameter-weighted 
variable and variable penalty methods is calculated when elements are square and of equal area to 
test the variable penalty method when the pressure field is not linear, and when some elements are 
small and some skinny to test how much the variable penalty method reduces digital truncation 
error, compared to other methods. 

VARIABLE PENALTY SOLUTIONS 
t- ABS. ERROR 5% 
3 
0 

SOLUTIONS 

ABS. E R R O R E L  

a4 106 108 lo10 
PEN ALT Y CON STA N T , C 

Figure 5. Penalty error in volumetric flux, i.e. the difference between that found by a penalty method and the direct mixed- 
interpolation method, through the outflow boundary: half channel, plane Poiseuille flow problem. (Based on Figure 3 
from Lectures in Applied Mathematics, (1989, ‘Improved flux calculations for viscous incompressible flow by the variable 

penalty method’, H. Kheshgi and L. E. Scriven, Volume 22, by permission of the American Mathematical Society.) 
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u = l , v = O  

0 U'V'O 1 

Figure 6. Lid-driven cavity problem with square elements of constant area 

Example: square elements. Figure 6 shows the element tessellation and boundary conditions for 
this problem. As chosen the elements have equal areas and the velocities are specified at all 
boundaries, as in Case 1 of Section 3.2; no pressure modes are detected in either conventional or 
variable penalty solutions. 

Again, solutions were calculated for a wide range of cA. Figure 7 shows the penalty error in u- 
velocity at a selected point ( x  = 0.4, y = 08) in the conventional penalty method (A = cA), the 
negative penalty method (A = - ca), and the variable penalty method (in this case 1" = k ca). At ca 
greater than lo8, the error is due to digital truncation and is of nearly the same magnitude in 
solutions calculated with the three methods. At cA less than lo8, the error is due to compressibility 
and is proportional to I/c, in solutions calculated with the three methods. The variable penalty 
method again has a smaller proportionality constant and is thus more accurate than either the 
negative or conventional penalty methods. The proportionality constant of the negative penalty 
solutions is of the same magnitude, yet opposite in sign from that of the conventional penalty 
solutions. If negative and conventional penalty solutions are added together and divided by two, 
the O(l/c,) compressibility errors cancel and the average is accurate to the next higher order, 
namely O(l/c:), as demonstrated by Figure 8. 

In the flow domain there are special points where velocities predicted by variable penalty 

k a 

1 x 10-4 

5 ~ 1 0 - 5  

PENALTY SOLUTIONS 

0 

NEGATIVE PENALTY 
SOLU T I ON S -5X10-5 

-I XIO-4 
102 lo4 106 lo8 lolo 

PENALTY CONSTANT, C i  

Figure 7. Penalty error, V - V,, at a characteristic node: driven cavity problem with square elements 
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Figure 

AVERAGE OF NEGATIVE 
PENALTY 8 CONVENTIONAL 

102 lo3 Id, 
PENALTY CONSTANT, C i  

8. Penalty error, V - V,, of the average of conventional and negative penalty solutions: driven cavity problem with 
square elements 

z 

OCONVENTIONAL PENALTY SOLUTION 

- 

102 lo4 106 108 

PE N A LTY CON S T A NT, C 

Figure 9. Penalty error, V - V,, at a node along the vertical centreline of the cavity: driven cavity 
elements 

u = l ,  v=o Ax=0.001 

problem with square 

Figure 10. Lid-driven cavity problem with element areas that vary greatly 
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CONVENTIONAL PENALTY SOLUTIONS- 
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Figure 11. Penalty error, V - V,, at a characteristic node: driven cavity problem with unequal element areas 

solutions are more accurate than O(l/cA). Figure 9 shows the penalty error in the u-velocity at  the 
centre node of the domain described in Figure 6 when calculated with the three solution methods. 
The penalty error in the conventional and negative penalty solutions is of O(l/c,)  over the range of 
cA shown in Figure 9. Penalty error in variable penalty solutions is roughly proportional to l/c!. 

Example: uneven element areas. To study the effect of varying element size on the accuracy of 
penalty solutions, the driven-cavity problem shown in Figure 10 is solved. Velocities are specified 
on all boundaries. According to Case 1 of Section 3.2, pressure modes should have no amplitude in 
conventional penalty solutions; there should be a hydrostatic pressure of O( l), however, in variable 
penalty solutions. 

In this example, variable penalty solutions contain a hydrostatic pressure of amplitude a ’3ti 10. 
This pressure does cause slightly greater compressibility error in variable penalty solutions than in 
conventional penalty solutions as shown in Figure 11. When elements vary greatly in size the area- 
weighting of A given by (13) is expected to reduce significantly the condition number of S and thus 
the magnitude of digital truncation error in variable penalty solutions. That this expectation is 
realized is seen vividly in Figure 11 where variable penalty solutions are accurate although cA is 
nearly a thousand times larger than for conventional penalty solutions. 

4 X10-4 
SOLUTIONS 

I- VARIABLE PENALTY SOLUTIONS g a T  2x10-4 

w - b  
00 0 

2 w  z1 5 7 - 2 ~ 1 0 - 4  

Z P  
II 

-.I= 
W “’ - 4 ~ 1 0 - 4  

lo4 106 lo8 1040 10’2 
PENALTY CONSTANT, Ck 

Figure 12 Penalty error, V - V,, at a characteristic node: driven cavity problem with unequal element areas and a traction 
free condition at one node 
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1 

OY 
4 ) 1 

Figure 13. Flow through a rotating square channel. (Based on Figure 4 from Lectures in Applied Mathematics, (1985), 
'Improved flux calculations for viscous incompressible flow by the variable penalty method', H. Kheshgi and L. E. Scriven, 

Volume 22, by permission of the American Mathematical Society.) 

The hydrostatic pressure can be removed from variable penalty solutions by requiring that 
traction vanish at  one boundary point, in this case x = 0301 and y = 0; the effect on the solution is 
imperceptible. Figure 12 shows that when this is done the variable penalty solutions are slightly 
more accurate than conventional penalty solutions when cA is less than lo7. Furthermore, the 
variable penalty method is still much more accurate when cA is greater than lo7. 

The penalty error in the diameter-weighted variable penalty method (A given by (17)) is 
shown in Figure 12. Although it is expected to reduce the global matrix condition number and thus 
the amount of digital truncation error slightly more than does the variable penalty method, it 
results in much more compressibility error when cA is less than lo7. It appears not to have any 
advantage over the variable penalty method and we consider it no further. 

4.3 Flow through a rotating channel 

Flow through a square channel rotating about an axis perpendicular to the channel top is shown 
in Figure 13. As Ekman number, the ratio of viscous to Coriolis force, falls boundary layers form 
along the solid walls and become the thin Ekman 
layers present are resolved by choosing elements which vary in dimension from 0.0002 to 0495 

When the Ekman number is 

v = 0,T =T,,=O 
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Figure 14. Rotating channel problem with elements designed to resolve thin boundary layers 
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Figure 15. Penalty error, V - V,, at the node nearest the corner of a rotating channel 
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Figure 16. Penalty error in volumetric flux through a rotating channel. (Based on Figure 5 from Lectures in Applied 
Mathematics, (19851, 'Improved flux calculations for viscous incompressible flow by the variable penalty method', 

H. Kheshgi and L. E. Scriven, Volume 22, by permission of the American Mathematical Society.) 

times the channel height. The presumed symmetry of the flow allows this problem to be solved for 
pressure and the three components of velocity on just a quarter of the two-dimensional channel 
cross-section. Both normal and shear stress conditions are specified on the boundary, as shown in 
Figure 14, cf. Case 4 of Section 3.2. 

The combination of small Ekman number and greatly varying element size prevents accurate 
solution by the conventional penalty method. Figure 15 shows the penalty error at that node which 
is within the channel and closest to the channel corner. At  this node the digital truncation error 
makes conventional penalty solutions inaccurate; the variable penalty solution remains accurate 
when c1 is chosen between lo6 and lo8. 

The volumetric flux through the channel is found by integrating the z-component of velocity 
across the channel. Figure 16 shows the relative penalty error in volumetric flux in the conventional 
and variable penalty solutions. The range of c1 over which the conventional method is accurate is 
narrow and unreliable. The corresponding range of the variable penalty method is broad. 

5. CONCLUSION 

Variable penalty parameters are easy to implement and can produce more accurate solutions than 
are achievable by the conventional penalty method, as is clear from the problems tested. Moreover, 
the variable penalty method is capable of solving certain problems, e.g. with thin boundary layers, 
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on short word-length computers; the conventional penalty method cannot. Further application 
and study of the variable penalty method for the solution of other constrained problems and using 
higher order basis functions is recommended. 
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